Tuesday, May 8, 2007

WAS "WITT REPORT" A FRAUD ??


"Witt Report" Fraudulent, Plagiarized ?

Did an overly money-hungry James Lee Witt hire an icompetent to write his famous report supposedly condemning Indian Point? Is his ghostwriter, Madhu Beriwal guilty of the failed New Orleans plan, and the drowning deaths of 1000 people? Here's an article from Sourcewatch--Truth in Media.

http://www.sourcewatch.org/index.php?title=Madhu_Beriwal

Madhu Beriwal
From SourceWatch
Madhu Beriwal is founder, president, and CEO of Innovative Emergency Management (IEM) of Arlington, Virginia.
Contents
· 1 Big Political Contributions
· 2 Other Activity
· 3 Related SourceWatch Resources
· 4 External Links
· 4.1 Articles & Commentary

GOP Contributions
Beriwal is "a big-time contributor to Politicians.. She's given thousands of dollars to pols, including Louisiana Sen. David Vitter, Rep. Mike Rogers of Michigan, Alabama Sen. Richard Shelby, Louisiana Rep. Bobby Jindal, Rep. Richard Baker of Louisiana, the National Republican Congressional Committee, former Arkansas Sen. Tim Hutchinson. Vitter was the largest recipient of funds from Beriwal." [1]
Other Activity
Madhu Beriwal, President of Innovative Emergency Management (IEM), had no experience in hurricane emergency management. Yet the FEMA contracted out New Orleans evacuation planning to IEM. They were paid $500,000 to come up with an emergency evacuation plan for New Orleans before Hurricane Katrina. They spent it on a hurricane simulation called Hurricane Pam that was marked with bitter in-fighting between state and local emergency management officials. They never came up with the evacuation plan. Over a 1000 people drowned due to IEM's failure to simulate a major hurricane hit on New Orleans properly.

Beriwal is also author of the NY Power Authority's Witt Report [2], a review of Indian Point nuclear power plant's evacuation plan. Prior to ghost writing the Witt Report, she had no prior experience in nuclear emergencies, and in fact simply copied entire chapters of the EPA radiation manual, as the substance of her (and Witt's) report. In an article for September 2003 Homeland Protection Professional [3] Madhu summarizes her advice. "People will be people" she says. Implying they are wary of government authority and will do things their own way - in panic. She seems to be blaming the victims for their misfortune. At any rate, it gives Beriwal a way to not do a competent job, and then say that people will mess themselves up anyway, so why bother.

James Lee Witt [4], who subcontracted the NY job (and others?) to Beriwal's firm, was FEMA Director under Bill Clinton and later private consultant for Florida's Governor Jeb Bush , and for Nextel Corporation. Witt spent the months after Katrina riding around Mississippi & Louisiana in a 55 foot luxury RV, stopping to sell Nextel phone contracts to municipal authorities in areas where phone service was out. His money making disaster profiteering resulted in his cynically bestowed nickname "Master of Disaster". While thousands mourned dead loved ones, lost homes, and slept on cots in the streets, Witt made over 3 million dollars from his "Fuss-Bus" travels during the immediate post-Katrina weeks. Another big open question is why no one is doing anything about IEM's complete and total failure in the wake of Hurricane Katrina. Also called into question is the veracity of the plagiarized "Witt Report", and whether Beriwal had the expertise required to put out such a document. It might even be said that thousands pinning their opposition to Indian Point on Witt, have pinned their beliefs on a fraud. Concerned citizens should be asking tough questions about Madhu Beriwal and IEM.

Related SourceWatch Resources
· FEMA contractors
· "Hurricane Pam" simulation

External Links
[edit]
Articles & Commentary
· Wayne Madsen, "FEMA Privatized Hurricane Disaster Recovery Planning for New Orleans and Southeastern Louisiana. Firms that received the contract are big GOP contributors," Global Research, September 7, 2005.
· Tim Padgett, "Preparing for the Worst. Madhu Beriwal, who helped New Orleans plan for a hurricane disaster, reflects on failures and lessons," Time, September 12, 2005.

Sunday, May 6, 2007

You've read the spin....Now Read The Facts



Why the U.S. Needs More Nuclear Power


Your typical city dweller doesn’t know just how much coal and uranium he burns each year. On Lake Shore Drive in Chicago—where the numbers are fairly representative of urban America as a whole—the answer is (roughly): four tons and a few ounces. In round numbers, tons of coal generate about half of the typical city’s electric power; ounces of uranium, about 17 percent; natural gas and hydro take care of the rest. New York is a bit different: an apartment dweller on the Upper West Side substitutes two tons of oil (or the equivalent in natural gas) for Chicago’s four tons of coal. The oil-tons get burned at plants like the huge oil/gas unit in Astoria, Queens. The uranium ounces get split at Indian Point in Westchester, 35 miles north of the city, as well as at the Ginna, Fitzpatrick, and Nine Mile Point units upstate, and at additional plants in Connecticut, New Jersey, and New Hampshire.
That’s the stunning thing about nuclear power: tiny quantities of raw material can do so much. A bundle of enriched-uranium fuel-rods that could fit into a two-bedroom apartment in Hell’s Kitchen would power the city for a year: furnaces, espresso machines, subways, streetlights, stock tickers, Times Square, everything—even our cars and taxis, if we could conveniently plug them into the grid. True, you don’t want to stack fuel rods in midtown Manhattan; you don’t in fact want to stack them casually on top of one another anywhere. But in suitable reactors, situated, say, 50 miles from the city on a few hundred acres of suitably fortified and well-guarded real estate, two rooms’ worth of fuel could electrify it all.
Think of our solitary New Yorker on the Upper West Side as a 1,400-watt bulb that never sleeps—that’s the national per-capita average demand for electric power from homes, factories, businesses, the lot. Our average citizen burns about twice as bright at 4 PM in August, and a lot dimmer at 4 AM in December; grown-ups burn more than kids, the rich more than the poor; but it all averages out: 14 floor lamps per person, lit round the clock. Convert this same number back into a utility’s supply-side jargon, and a million people need roughly 1.4 “gigs” of power—1.4 gigawatts (GW). Running at peak power, Entergy’s two nuclear units at Indian Point generate just under 2 GW. So just four Indian Points could take care of New York City’s 7-GW round-the-clock average. Six could handle its peak load of about 11.5 GW. And if we had all-electric engines, machines, and heaters out at the receiving end, another ten or so could power all the cars, ovens, furnaces—everything else in the city that oil or gas currently fuels.
For such a nuclear-powered future to arrive, however, we’ll need to get beyond our nuclear-power past. In the now-standard histories, the beginning of the end of nuclear power arrived on March 28, 1979, with the meltdown of the uranium core at Three Mile Island in Pennsylvania. The Chernobyl disaster seven years later drove the final nail into the nuclear coffin. It didn’t matter that the Three Mile Island containment vessel had done its job and prevented any significant release of radioactivity, or that Soviet reactors operated within a system that couldn’t build a safe toaster oven. Uranium was finished.
Three Mile Island came on the heels of the first great energy shock to hit America. On October 19, 1973, King Faisal ordered a 25 percent reduction in Saudi Arabia’s oil shipments to the United States, launching the Arab oil embargo. Oil supplies would tighten and prices would rise from then on, experts predicted. It would take some time, but oil was finished, too.
Five months after Three Mile Island, the nation’s first energy secretary summed up our predicament: “The energy future is bleak,” James R. Schlesinger declared, “and is likely to grow bleaker in the decade ahead. We must rapidly adjust our economics to a condition of chronic stringency in traditional energy supplies.” Fortunately, some argued, the U.S. could manage on less—much less. Smaller, more fuel-efficient cars were gaining favor, and rising gas prices would curb demand. The nation certainly didn’t need any new giant electric power plants—efficiency and the development of renewable sources of power would suffice. “The long-run supply curve for electricity is as flat as the Kansas horizon,” noted one right-thinking energy sage.
In the ensuing decades, however, American oil consumption rose 15 percent and electricity use almost doubled. Many people aren’t happy about it. Protecting our oil-supply lines entangles us with feudal theocracies and the fanatical sects that they spawn. The coal that we burn to generate so much of our electricity pollutes the air and may warm the planet. What to do? All sober and thoughtful energy pundits at the New York Times, Greenpeace, and the Harvard Divinity School agree: the answer to both problems is . . . efficiency and the development of renewable sources of power. Nevertheless, the secretary of energy, his boss (now a Texas oilman, not a Georgia peanut farmer), and the rest of the country should look elsewhere.
The U.S. today consumes about 100 quads—100 quadrillion BTUs—of raw thermal energy per year. We do three basic things with it: generate electricity (about 40 percent of the raw energy consumed), move vehicles (30 percent), and produce heat (30 percent). Oil is the fuel of transportation, of course. We principally use natural gas to supply raw heat, though it’s now making steady inroads into electric power generation. Fueling electric power plants are mainly (in descending order) coal, uranium, natural gas, and rainfall, by way of hydroelectricity.
This sharp segmentation emerged relatively recently, and there’s no reason to think it’s permanent. After all, developing economies use trees and pasture as fuel for heat and transportation, and don’t generate much electricity at all. A century ago, coal was the all-purpose fuel of industrial economies: coal furnaces provided heat, and coal-fired steam engines powered trains, factories, and the early electric power plants. From the 1930s until well into the 1970s, oil fueled not just cars but many electric power plants, too. And by 2020, electricity almost certainly will have become the new cross-cutting “fuel” in both stationary and mobile applications.
That shift is already under way. About 60 percent of the fuel we use today isn’t oil but coal, uranium, natural gas, and gravity—all making electricity. Electricity has met almost all of the growth in U.S. energy demand since the 1980s. About 60 percent of our GDP now comes from industries and services that use electricity as their front-end “fuel”—in 1950, the figure was only 20 percent. The fastest growth sectors of the economy—information technology and telecom, notably—depend entirely on electricity for fuel, almost none of it oil-generated. Electrically powered information technology accounts for some 60 percent of new capital spending.
Electricity is taking over ever more of the thermal sector, too. A microwave oven displaces much of what a gas stove once did in a kitchen. So, too, lasers, magnetic fields, microwaves, and other forms of high-intensity photon power provide more precise, calibrated heating than do conventional ovens in manufacturing and the industrial processing of materials. These electric cookers (broadly defined) are now replacing conventional furnaces, ovens, dryers, and welders to heat air, water, foods, and chemicals, to cure paints and glues, to forge steel, and to weld ships. Over the next two decades, such trends will move another 15 percent or so of our energy economy from conventional thermal to electrically powered processes. And that will shift about 15 percent of our oil-and-gas demand to whatever primary fuels we’ll then be using to generate electricity.
Electricity is also taking over the power train in transportation—not the engine itself, but the system that drives power throughout the car. Running in confined tunnels as they do, subways had to be all-electric from the get-go. More recently, diesel-electric locomotives and many of the monster trucks used in mining have made the transition to electric drive trains. Though the oil-fired combustion engine is still there, it’s now just an onboard electric generator that propels only electrons.
Most significantly, the next couple of decades will see us convert to the hybrid gasoline-and-electric car. A steadily rising fraction of the power produced under the hood of a car already is used to generate electricity: electrical modules are replacing components that belts, gears, pulleys, and shafts once drove. Steering, suspension, brakes, fans, pumps, and valves will eventually go electric; in the end, electricity will drive the wheels, too. Gas prices and environmental mandates have little to do with this changeover. The electric drive train simply delivers better performance, lower cost, and less weight.
The policy implications are enormous. Outfitted with a fully electric power train, most of the car—everything but its prime mover—looks like a giant electrical appliance. This appliance won’t run any great distance on batteries alone, given today’s battery technology. But a substantial battery pack on board will provide surges of power when needed. And that makes possible at least some “refueling” of the car from the electricity grid. As cars get more electric, an infrastructure of battery-recharging stations will grow apace, probably in driveways and parking lots, where most cars spend most of their time.
Once you’ve got the wheels themselves running on electricity, the basic economics strongly favor getting that electricity from the grid if you can. Burning $2-a-gallon gasoline, the power generated by current hybrid-car engines costs about 35 cents per kilowatt-hour. Many utilities, though, sell off-peak power for much less: 2 to 4 cents per kilowatt-hour. The nationwide residential price is still only 8.5 cents or so. (Peak rates in Manhattan are higher because of the city’s heavy dependence on oil and gas, but not enough to change the basic arithmetic.) Grid kilowatts are cheaper because cheaper fuels generate them and because utility power plants run a lot more efficiently than car engines.
The gas tank and combustion engine won’t disappear anytime soon, but in the imminent future, grid power will (in effect) begin to top off the tank in between the short trips that account for most driving. All-electric vehicles flopped in the 1990s because batteries can’t store sufficient power for long weekend trips. But plug-in hybrids do have a gasoline tank for the long trips. And the vast majority of the most fuel-hungry trips are under six miles—within the range of the 2 to 5 kWh capacity of the onboard nickel-metal-hydride batteries in hybrids already on the road, and easily within the range of emerging automotive-class lithium batteries. Nationally, some 10 percent of hybrid cars could end up running almost entirely on the grid, as they travel less than six miles per day. Stick an extra 90 pounds—$800 worth—of nickel-metal-hydride batteries in a hybrid, recharge in garages and parking lots, and you can shift roughly 25 percent of a typical driver’s fuel-hungriest miles to the grid. Urban drivers could go long stretches without going near a gas station. The technology for replacing (roughly) one pint of gasoline with one pound of coal or under one ounce of uranium to feed one kilowatt-hour of power to the wheels is now close at hand.
So today we use 40 percent of our fuel to power the plug, and the plug powers 60 percent of GDP. And with the ascent of microwaves, lasers, hybrid wheels, and such, we’re moving to 60 and 80 percent, respectively, soon. And then, in due course, 100/100. We’re turning to electricity as fuel because it can do more, faster, in much less space—indeed, it’s by far the fastest and purest form of power yet tamed for ubiquitous use. Small wonder that demand for it keeps growing.
We’ve been meeting half of that new demand by burning an extra 400 million tons of coal a year, with coal continuing to supply half of our wired power. Natural gas, the fossil fuel grudgingly favored by most environmentalists, has helped meet the new demand, too: it’s back at 16 percent of electricity generated, where it was two decades ago, after dropping sharply for a time. Astonishingly, over this same period, uranium’s share of U.S. electricity has also risen—from 11 percent to its current 20 percent. Part of the explanation is more nuclear power plants. Even though Three Mile Island put an end to the commissioning of new facilities, some already under construction at the time later opened, with the plant count peaking at 112 in 1990. Three Mile Island also impelled plant operators to develop systematic procedures for sharing information and expertise, and plants that used to run seven months per year now run almost eleven. Uranium has thus displaced about eight percentage points of oil, and five points of hydroelectric, in the expanding electricity market.
Renewable fuels, by contrast, made no visible dent in energy supplies, despite the hopes of Greens and the benefits of government-funded research, subsidies, and tax breaks. About a half billion kWh of electricity came from solar power in 2002—roughly 0.013 percent of the U.S. total. Wind power contributed another 0.27 percent. Fossil and nuclear fuels still completely dominate the U.S. energy supply, as in all industrialized economies.
The other great hope of environmentalists, efficiency, did improve over the last couple of decades—very considerably, in fact. Air conditioners, car engines, industrial machines, lightbulbs, refrigerator motors—without exception, all do much more, with much less, than they used to. Yet in aggregate, they burn more fuel, too. Boosting efficiency actually raises consumption, as counterintuitive as that sounds. The more efficient a car, the cheaper the miles; the more efficient a refrigerator, the cheaper the ice; and at the end of the day, we use more efficient technology so much more that total energy consumption goes up, not down.
We’re burning our 40 quads of raw fuel to generate about 3.5 trillion kilowatt-hours of electricity per year; if the automotive plug-and-play future does unfold on schedule, we’ll need as much as 7 trillion kWh per year by 2025. How should we generate the extra trillions of kilowatt-hours?
With hydrogen, the most optimistic Green visionaries reply—produced by solar cells or windmills. But it’s not possible to take such proposals seriously. New York City consumes so much energy that you’d need, at a minimum, to cover two cities with solar cells to power a single city (see “How Cities Green the Planet,” Winter 2000). No conceivable mix of solar and wind could come close to supplying the trillions of additional kilowatt-hours of power we’ll soon need.
Nuclear power could do it—easily. In all key technical respects, it is the antithesis of solar power. A quad’s worth of solar-powered wood is a huge forest—beautiful to behold, but bulky and heavy. Pound for pound, coal stores about twice as much heat. Oil beats coal by about twice as much again. And an ounce of enriched-uranium fuel equals about 4 tons of coal, or 15 barrels of oil. That’s why minuscule quantities contained in relatively tiny reactors can power a metropolis.
What’s more, North America has vast deposits of uranium ore, and scooping it up is no real challenge. Enrichment accounts for about half of the fuel’s cost, and enrichment technologies keep improving. Proponents of solar and wind power maintain—correctly—that the underlying technologies for these energy sources keep getting cheaper, but so do those that squeeze power out of conventional fuels. The lasers coming out of the same semiconductor fabs that build solar cells could enrich uranium a thousand times more efficiently than the gaseous-diffusion processes currently used.
And we also know this: left to its own devices, the market has not pursued thin, low-energy-density fuels, however cheap, but has instead paid steep premiums for fuels that pack more energy into less weight and space, and for power plants that pump greater power out of smaller engines, furnaces, generators, reactors, and turbines. Until the 1970s, engineering and economic imperatives had been pushing the fuel mix inexorably up the power-density curve, from wood to coal to oil to uranium. And the same held true on the demand side, with consumers steadily shifting toward fuels carrying more power, delivered faster, in less space.
Then King Faisal and Three Mile Island shattered our confidence and convinced regulators, secretaries of energy, and even a president that just about everything that the economists and engineers thought they knew about energy was wrong. So wrong that we had to reverse completely the extraordinarily successful power policies of the past.
New York has certainly felt the effects of that reversal. In 1965, the Long Island Lighting Company (LILCO) announced plans to build a $75 million nuclear plant in Suffolk County, to come on line by 1973; soon after, it purchased a 455-acre site between Shoreham and Wading River. A bit later, LILCO decided to increase Shoreham’s size and said it wanted to build several other nuclear plants in the area. Public resistance and federal regulators delayed Shoreham’s completion. Then Three Mile Island happened. In the aftermath, regulators required plant operators to devise evacuation plans in coordination with state and local governments. In early 1983, newly elected governor Mario Cuomo and the Suffolk County legislature both declared that no evacuation plan would ever be feasible and safe. That was that. By the time the state fully decommissioned Shoreham in 1994, its price tag had reached $6 billion—and the plant had never started full-power commercial operation. To pay for it all, Long Island electric rates skyrocketed.
What scared many New Yorkers—and thus many politicians—away from nuclear power was what had originally attracted the engineers and the utility economists to it: nuclear facilities use a unique fuel, burned, in its fashion, in relatively tiny reactors, to generate gargantuan amounts of power. Do it all just right, end to end, and you get cheap, abundant power, and King Faisal can’t do a thing about it. But the raw material itself, packing so much power into so little material, is inherently dangerous. Sufficiently bad engineering can result in a Three Mile Island or a Chernobyl. And these days, there’s the fear that poor security might enable terrorists to pull off something even worse.
How worried should we really be in 2005 that accidents or attacks might release and disperse a nuclear power plant’s radioactive fuel? Not very. Our civilian nuclear industry has dramatically improved its procedures and safety-related hardware since 1979. Several thousand reactor-years of statistics since Three Mile Island clearly show that these power plants are extraordinarily reliable in normal operation.
And uranium’s combination of power and super-density makes the fuel less of a terror risk, not more, at least from an engineering standpoint. It’s easy to “overbuild” the protective walls and containment systems of nuclear facilities, since—like the pyramids—the payload they’re built to shield is so small. Protecting skyscrapers is hard; no builder can afford to erect a hundred times more wall than usable space. Guaranteeing the integrity of a jumbo jet’s fuel tanks is impossible; the tanks have to fly. Shielding a nuclear plant’s tiny payload is easy—just erect more steel, pour more concrete, and build tougher perimeters.
In fact, it’s a safety challenge that we have already met. Today’s plants split atoms behind super-thick layers of steel and concrete; future plants would boast thicker protection still. All the numbers, and the strong consensus in the technical community, reinforce the projections made two decades ago: it is extremely unlikely that there will ever be a serious release of nuclear materials from a U.S. reactor.
What about the economic cost of nuclear power? Wind and sun are free, of course. But if the cost of fuel were all that mattered, the day of too-cheap-to-meter nuclear power would now be here—nearer, certainly, than too-cheap-to-meter solar power. Raw fuel accounts for over half the delivered cost of electricity generated in gas-fired turbines, about one-third of coal-fired power, and just a tenth of nuclear electricity. Factor in the cost of capital equipment, and the cheapest electrons come from uranium and coal, not sun and wind. What we pay for at our electric meter is increasingly like what we pay for at fancy restaurants: not the raw calories, but the fine linen, the service, and the chef’s ineffable artistry. In our overall energy accounts, the sophisticated power-conversion hardware matters more every year, and the cost of raw fuel matters less.
This in itself is great news for America. We’re good at large-scale hardware; we build it ourselves and keep building it cheaper. The average price of U.S. electricity fell throughout the twentieth century, and it has kept falling since, except in egregiously mismanaged markets such as California’s.
The cheap, plentiful power does terrific things for labor productivity and overall employment. As Lewis E. Lehrman notes, rising employment strongly correlates with rising supplies of low-cost energy. It takes energy to get the increasingly mobile worker to the increasingly distant workplace, and energy to process materials and power the increasingly advanced machines that shape and assemble those materials.
Most of the world, Europe aside, now recognizes this point. Workers in Asia and India are swiftly gaining access to the powered machines that steadily boosted the productivity of the American factory worker throughout the twentieth century. And the electricity driving those machines comes from power plants designed—and often built—by U.S. vendors. The power is a lot less expensive than ours, though, since it is generated the old-fashioned forget-the-environment way. There is little bother about protecting the river or scrubbing the smoke. China’s answer to the 2-gigawatt Hoover Dam on the Colorado River is the Three Gorges project, an 18-gigawatt dam on the Yangtze River. Combine cheaper supplies of energy with ready access to heavy industrial machines, and it’s hard to see how foreign laborers cannot close the productivity gap that has historically enabled American workers to remain competitive at considerably higher wages. Unless, that is, the United States keeps on pushing the productivity of its own workforce out ahead of its competitors. That—inevitably—means expanding our power supply and keeping it affordable, and deploying even more advanced technologies of powered production. Nuclear power would help keep the twenty-first-century U.S. economy globally competitive.
Greens don’t want to hear it, but nuclear power makes the most environmental sense, too. Nuclear wastes pose no serious engineering problems. Uranium is such an energy-rich fuel that the actual volume of waste is tiny compared with that of other fuels, and is easily converted from its already-stable ceramic form as a fuel into an even more stable glass-like compound, and just as easily deposited in deep geological formations, themselves stable for tens of millions of years. And what has Green antinuclear activism achieved since the seventies? Not the reduction in demand for energy that it had hoped for but a massive increase in the use of coal, which burns less clean than uranium.
Many Greens think that they have a good grip on the likely trajectory of the planet’s climate over the next 100 years. If we keep burning fossil fuels at current rates, their climate models tell them, we’ll face a meltdown on a much larger scale than Chernobyl’s, beginning with the polar ice caps. Saving an extra 400 million tons of coal here and there—roughly the amount of carbon that the United States would have to stop burning to comply with the Kyoto Protocol today—would make quite a difference, we’re told.
But serious Greens must face reality. Short of some convulsion that drastically shrinks the economy, demand for electricity will go on rising. Total U.S. electricity consumption will increase another 20 to 30 percent, at least, over the next ten years. Neither Democrats nor Republicans, moreover, will let the grid go cold—not even if that means burning yet another 400 million more tons of coal. Not even if that means melting the ice caps and putting much of Bangladesh under water. No governor or president wants to be the next Gray Davis, recalled from office when the lights go out.
The power has to come from somewhere. Sun and wind will never come close to supplying it. Earnest though they are, the people who argue otherwise are the folks who brought us 400 million extra tons of coal a year. The one practical technology that could decisively shift U.S. carbon emissions in the near term would displace coal with uranium, since uranium burns emission-free. It’s time even for Greens to embrace the atom.
It must surely be clear by now, too, that the political costs of depending so heavily on oil from the Middle East are just too great. We need to find a way to stop funneling $25 billion a year (or so) of our energy dollars into churning cauldrons of hate and violence. By sharply curtailing our dependence on Middle Eastern oil, we would greatly expand the range of feasible political and military options in dealing with the countries that breed the terrorists.
The best thing we can do to decrease the Middle East’s hold on us is to turn off the spigot ourselves. For economic, ecological, and geopolitical reasons, U.S. policymakers ought to promote electrification on the demand side, and nuclear fuel on the supply side, wherever they reasonably can.

Tags Indian Point, American Survival, Global Warming, High Tech Energy


Blog: WHITE NUCLEAR SNOWFLAKE - Get your quick ping button at autopinger.com!

Friday, May 4, 2007

WHY INDIAN POINT IS ESSENTIAL


http://www.city-journal.org/html/15_1_nuclear_power.html

Why the U.S. Needs More Nuclear Power
Peter W. Huber, Mark P. Mills

Your typical city dweller doesn’t know just how much coal and uranium he burns each year. On Lake Shore Drive in Chicago—where the numbers are fairly representative of urban America as a whole—the answer is (roughly): four tons and a few ounces. In round numbers, tons of coal generate about half of the typical city’s electric power; ounces of uranium, about 17 percent; natural gas and hydro take care of the rest. New York is a bit different: an apartment dweller on the Upper West Side substitutes two tons of oil (or the equivalent in natural gas) for Chicago’s four tons of coal. The oil-tons get burned at plants like the huge oil/gas unit in Astoria, Queens. The uranium ounces get split at Indian Point in Westchester, 35 miles north of the city, as well as at the Ginna, Fitzpatrick, and Nine Mile Point units upstate, and at additional plants in Connecticut, New Jersey, and New Hampshire.
That’s the stunning thing about nuclear power: tiny quantities of raw material can do so much. A bundle of enriched-uranium fuel-rods that could fit into a two-bedroom apartment in Hell’s Kitchen would power the city for a year: furnaces, espresso machines, subways, streetlights, stock tickers, Times Square, everything—even our cars and taxis, if we could conveniently plug them into the grid. True, you don’t want to stack fuel rods in midtown Manhattan; you don’t in fact want to stack them casually on top of one another anywhere. But in suitable reactors, situated, say, 50 miles from the city on a few hundred acres of suitably fortified and well-guarded real estate, two rooms’ worth of fuel could electrify it all.
Think of our solitary New Yorker on the Upper West Side as a 1,400-watt bulb that never sleeps—that’s the national per-capita average demand for electric power from homes, factories, businesses, the lot. Our average citizen burns about twice as bright at 4 PM in August, and a lot dimmer at 4 AM in December; grown-ups burn more than kids, the rich more than the poor; but it all averages out: 14 floor lamps per person, lit round the clock. Convert this same number back into a utility’s supply-side jargon, and a million people need roughly 1.4 “gigs” of power—1.4 gigawatts (GW). Running at peak power, Entergy’s two nuclear units at Indian Point generate just under 2 GW. So just four Indian Points could take care of New York City’s 7-GW round-the-clock average. Six could handle its peak load of about 11.5 GW. And if we had all-electric engines, machines, and heaters out at the receiving end, another ten or so could power all the cars, ovens, furnaces—everything else in the city that oil or gas currently fuels.
For such a nuclear-powered future to arrive, however, we’ll need to get beyond our nuclear-power past. In the now-standard histories, the beginning of the end of nuclear power arrived on March 28, 1979, with the meltdown of the uranium core at Three Mile Island in Pennsylvania. The Chernobyl disaster seven years later drove the final nail into the nuclear coffin. It didn’t matter that the Three Mile Island containment vessel had done its job and prevented any significant release of radioactivity, or that Soviet reactors operated within a system that couldn’t build a safe toaster oven. Uranium was finished.
Three Mile Island came on the heels of the first great energy shock to hit America. On October 19, 1973, King Faisal ordered a 25 percent reduction in Saudi Arabia’s oil shipments to the United States, launching the Arab oil embargo. Oil supplies would tighten and prices would rise from then on, experts predicted. It would take some time, but oil was finished, too.
Five months after Three Mile Island, the nation’s first energy secretary summed up our predicament: “The energy future is bleak,” James R. Schlesinger declared, “and is likely to grow bleaker in the decade ahead. We must rapidly adjust our economics to a condition of chronic stringency in traditional energy supplies.” Fortunately, some argued, the U.S. could manage on less—much less. Smaller, more fuel-efficient cars were gaining favor, and rising gas prices would curb demand. The nation certainly didn’t need any new giant electric power plants—efficiency and the development of renewable sources of power would suffice. “The long-run supply curve for electricity is as flat as the Kansas horizon,” noted one right-thinking energy sage.
In the ensuing decades, however, American oil consumption rose 15 percent and electricity use almost doubled. Many people aren’t happy about it. Protecting our oil-supply lines entangles us with feudal theocracies and the fanatical sects that they spawn. The coal that we burn to generate so much of our electricity pollutes the air and may warm the planet. What to do? All sober and thoughtful energy pundits at the New York Times, Greenpeace, and the Harvard Divinity School agree: the answer to both problems is . . . efficiency and the development of renewable sources of power. Nevertheless, the secretary of energy, his boss (now a Texas oilman, not a Georgia peanut farmer), and the rest of the country should look elsewhere.
The U.S. today consumes about 100 quads—100 quadrillion BTUs—of raw thermal energy per year. We do three basic things with it: generate electricity (about 40 percent of the raw energy consumed), move vehicles (30 percent), and produce heat (30 percent). Oil is the fuel of transportation, of course. We principally use natural gas to supply raw heat, though it’s now making steady inroads into electric power generation. Fueling electric power plants are mainly (in descending order) coal, uranium, natural gas, and rainfall, by way of hydroelectricity.
This sharp segmentation emerged relatively recently, and there’s no reason to think it’s permanent. After all, developing economies use trees and pasture as fuel for heat and transportation, and don’t generate much electricity at all. A century ago, coal was the all-purpose fuel of industrial economies: coal furnaces provided heat, and coal-fired steam engines powered trains, factories, and the early electric power plants. From the 1930s until well into the 1970s, oil fueled not just cars but many electric power plants, too. And by 2020, electricity almost certainly will have become the new cross-cutting “fuel” in both stationary and mobile applications.
That shift is already under way. About 60 percent of the fuel we use today isn’t oil but coal, uranium, natural gas, and gravity—all making electricity. Electricity has met almost all of the growth in U.S. energy demand since the 1980s. About 60 percent of our GDP now comes from industries and services that use electricity as their front-end “fuel”—in 1950, the figure was only 20 percent. The fastest growth sectors of the economy—information technology and telecom, notably—depend entirely on electricity for fuel, almost none of it oil-generated. Electrically powered information technology accounts for some 60 percent of new capital spending.
Electricity is taking over ever more of the thermal sector, too. A microwave oven displaces much of what a gas stove once did in a kitchen. So, too, lasers, magnetic fields, microwaves, and other forms of high-intensity photon power provide more precise, calibrated heating than do conventional ovens in manufacturing and the industrial processing of materials. These electric cookers (broadly defined) are now replacing conventional furnaces, ovens, dryers, and welders to heat air, water, foods, and chemicals, to cure paints and glues, to forge steel, and to weld ships. Over the next two decades, such trends will move another 15 percent or so of our energy economy from conventional thermal to electrically powered processes. And that will shift about 15 percent of our oil-and-gas demand to whatever primary fuels we’ll then be using to generate electricity.
Electricity is also taking over the power train in transportation—not the engine itself, but the system that drives power throughout the car. Running in confined tunnels as they do, subways had to be all-electric from the get-go. More recently, diesel-electric locomotives and many of the monster trucks used in mining have made the transition to electric drive trains. Though the oil-fired combustion engine is still there, it’s now just an onboard electric generator that propels only electrons.
Most significantly, the next couple of decades will see us convert to the hybrid gasoline-and-electric car. A steadily rising fraction of the power produced under the hood of a car already is used to generate electricity: electrical modules are replacing components that belts, gears, pulleys, and shafts once drove. Steering, suspension, brakes, fans, pumps, and valves will eventually go electric; in the end, electricity will drive the wheels, too. Gas prices and environmental mandates have little to do with this changeover. The electric drive train simply delivers better performance, lower cost, and less weight.
The policy implications are enormous. Outfitted with a fully electric power train, most of the car—everything but its prime mover—looks like a giant electrical appliance. This appliance won’t run any great distance on batteries alone, given today’s battery technology. But a substantial battery pack on board will provide surges of power when needed. And that makes possible at least some “refueling” of the car from the electricity grid. As cars get more electric, an infrastructure of battery-recharging stations will grow apace, probably in driveways and parking lots, where most cars spend most of their time.
Once you’ve got the wheels themselves running on electricity, the basic economics strongly favor getting that electricity from the grid if you can. Burning $2-a-gallon gasoline, the power generated by current hybrid-car engines costs about 35 cents per kilowatt-hour. Many utilities, though, sell off-peak power for much less: 2 to 4 cents per kilowatt-hour. The nationwide residential price is still only 8.5 cents or so. (Peak rates in Manhattan are higher because of the city’s heavy dependence on oil and gas, but not enough to change the basic arithmetic.) Grid kilowatts are cheaper because cheaper fuels generate them and because utility power plants run a lot more efficiently than car engines.
The gas tank and combustion engine won’t disappear anytime soon, but in the imminent future, grid power will (in effect) begin to top off the tank in between the short trips that account for most driving. All-electric vehicles flopped in the 1990s because batteries can’t store sufficient power for long weekend trips. But plug-in hybrids do have a gasoline tank for the long trips. And the vast majority of the most fuel-hungry trips are under six miles—within the range of the 2 to 5 kWh capacity of the onboard nickel-metal-hydride batteries in hybrids already on the road, and easily within the range of emerging automotive-class lithium batteries. Nationally, some 10 percent of hybrid cars could end up running almost entirely on the grid, as they travel less than six miles per day. Stick an extra 90 pounds—$800 worth—of nickel-metal-hydride batteries in a hybrid, recharge in garages and parking lots, and you can shift roughly 25 percent of a typical driver’s fuel-hungriest miles to the grid. Urban drivers could go long stretches without going near a gas station. The technology for replacing (roughly) one pint of gasoline with one pound of coal or under one ounce of uranium to feed one kilowatt-hour of power to the wheels is now close at hand.
So today we use 40 percent of our fuel to power the plug, and the plug powers 60 percent of GDP. And with the ascent of microwaves, lasers, hybrid wheels, and such, we’re moving to 60 and 80 percent, respectively, soon. And then, in due course, 100/100. We’re turning to electricity as fuel because it can do more, faster, in much less space—indeed, it’s by far the fastest and purest form of power yet tamed for ubiquitous use. Small wonder that demand for it keeps growing.
We’ve been meeting half of that new demand by burning an extra 400 million tons of coal a year, with coal continuing to supply half of our wired power. Natural gas, the fossil fuel grudgingly favored by most environmentalists, has helped meet the new demand, too: it’s back at 16 percent of electricity generated, where it was two decades ago, after dropping sharply for a time. Astonishingly, over this same period, uranium’s share of U.S. electricity has also risen—from 11 percent to its current 20 percent. Part of the explanation is more nuclear power plants. Even though Three Mile Island put an end to the commissioning of new facilities, some already under construction at the time later opened, with the plant count peaking at 112 in 1990. Three Mile Island also impelled plant operators to develop systematic procedures for sharing information and expertise, and plants that used to run seven months per year now run almost eleven. Uranium has thus displaced about eight percentage points of oil, and five points of hydroelectric, in the expanding electricity market.
Renewable fuels, by contrast, made no visible dent in energy supplies, despite the hopes of Greens and the benefits of government-funded research, subsidies, and tax breaks. About a half billion kWh of electricity came from solar power in 2002—roughly 0.013 percent of the U.S. total. Wind power contributed another 0.27 percent. Fossil and nuclear fuels still completely dominate the U.S. energy supply, as in all industrialized economies.
The other great hope of environmentalists, efficiency, did improve over the last couple of decades—very considerably, in fact. Air conditioners, car engines, industrial machines, lightbulbs, refrigerator motors—without exception, all do much more, with much less, than they used to. Yet in aggregate, they burn more fuel, too. Boosting efficiency actually raises consumption, as counterintuitive as that sounds. The more efficient a car, the cheaper the miles; the more efficient a refrigerator, the cheaper the ice; and at the end of the day, we use more efficient technology so much more that total energy consumption goes up, not down.
We’re burning our 40 quads of raw fuel to generate about 3.5 trillion kilowatt-hours of electricity per year; if the automotive plug-and-play future does unfold on schedule, we’ll need as much as 7 trillion kWh per year by 2025. How should we generate the extra trillions of kilowatt-hours?
With hydrogen, the most optimistic Green visionaries reply—produced by solar cells or windmills. But it’s not possible to take such proposals seriously. New York City consumes so much energy that you’d need, at a minimum, to cover two cities with solar cells to power a single city (see “How Cities Green the Planet,” Winter 2000). No conceivable mix of solar and wind could come close to supplying the trillions of additional kilowatt-hours of power we’ll soon need.
Nuclear power could do it—easily. In all key technical respects, it is the antithesis of solar power. A quad’s worth of solar-powered wood is a huge forest—beautiful to behold, but bulky and heavy. Pound for pound, coal stores about twice as much heat. Oil beats coal by about twice as much again. And an ounce of enriched-uranium fuel equals about 4 tons of coal, or 15 barrels of oil. That’s why minuscule quantities contained in relatively tiny reactors can power a metropolis.
What’s more, North America has vast deposits of uranium ore, and scooping it up is no real challenge. Enrichment accounts for about half of the fuel’s cost, and enrichment technologies keep improving. Proponents of solar and wind power maintain—correctly—that the underlying technologies for these energy sources keep getting cheaper, but so do those that squeeze power out of conventional fuels. The lasers coming out of the same semiconductor fabs that build solar cells could enrich uranium a thousand times more efficiently than the gaseous-diffusion processes currently used.
And we also know this: left to its own devices, the market has not pursued thin, low-energy-density fuels, however cheap, but has instead paid steep premiums for fuels that pack more energy into less weight and space, and for power plants that pump greater power out of smaller engines, furnaces, generators, reactors, and turbines. Until the 1970s, engineering and economic imperatives had been pushing the fuel mix inexorably up the power-density curve, from wood to coal to oil to uranium. And the same held true on the demand side, with consumers steadily shifting toward fuels carrying more power, delivered faster, in less space.
Then King Faisal and Three Mile Island shattered our confidence and convinced regulators, secretaries of energy, and even a president that just about everything that the economists and engineers thought they knew about energy was wrong. So wrong that we had to reverse completely the extraordinarily successful power policies of the past.
New York has certainly felt the effects of that reversal. In 1965, the Long Island Lighting Company (LILCO) announced plans to build a $75 million nuclear plant in Suffolk County, to come on line by 1973; soon after, it purchased a 455-acre site between Shoreham and Wading River. A bit later, LILCO decided to increase Shoreham’s size and said it wanted to build several other nuclear plants in the area. Public resistance and federal regulators delayed Shoreham’s completion. Then Three Mile Island happened. In the aftermath, regulators required plant operators to devise evacuation plans in coordination with state and local governments. In early 1983, newly elected governor Mario Cuomo and the Suffolk County legislature both declared that no evacuation plan would ever be feasible and safe. That was that. By the time the state fully decommissioned Shoreham in 1994, its price tag had reached $6 billion—and the plant had never started full-power commercial operation. To pay for it all, Long Island electric rates skyrocketed.
What scared many New Yorkers—and thus many politicians—away from nuclear power was what had originally attracted the engineers and the utility economists to it: nuclear facilities use a unique fuel, burned, in its fashion, in relatively tiny reactors, to generate gargantuan amounts of power. Do it all just right, end to end, and you get cheap, abundant power, and King Faisal can’t do a thing about it. But the raw material itself, packing so much power into so little material, is inherently dangerous. Sufficiently bad engineering can result in a Three Mile Island or a Chernobyl. And these days, there’s the fear that poor security might enable terrorists to pull off something even worse.
How worried should we really be in 2005 that accidents or attacks might release and disperse a nuclear power plant’s radioactive fuel? Not very. Our civilian nuclear industry has dramatically improved its procedures and safety-related hardware since 1979. Several thousand reactor-years of statistics since Three Mile Island clearly show that these power plants are extraordinarily reliable in normal operation.
And uranium’s combination of power and super-density makes the fuel less of a terror risk, not more, at least from an engineering standpoint. It’s easy to “overbuild” the protective walls and containment systems of nuclear facilities, since—like the pyramids—the payload they’re built to shield is so small. Protecting skyscrapers is hard; no builder can afford to erect a hundred times more wall than usable space. Guaranteeing the integrity of a jumbo jet’s fuel tanks is impossible; the tanks have to fly. Shielding a nuclear plant’s tiny payload is easy—just erect more steel, pour more concrete, and build tougher perimeters.
In fact, it’s a safety challenge that we have already met. Today’s plants split atoms behind super-thick layers of steel and concrete; future plants would boast thicker protection still. All the numbers, and the strong consensus in the technical community, reinforce the projections made two decades ago: it is extremely unlikely that there will ever be a serious release of nuclear materials from a U.S. reactor.
What about the economic cost of nuclear power? Wind and sun are free, of course. But if the cost of fuel were all that mattered, the day of too-cheap-to-meter nuclear power would now be here—nearer, certainly, than too-cheap-to-meter solar power. Raw fuel accounts for over half the delivered cost of electricity generated in gas-fired turbines, about one-third of coal-fired power, and just a tenth of nuclear electricity. Factor in the cost of capital equipment, and the cheapest electrons come from uranium and coal, not sun and wind. What we pay for at our electric meter is increasingly like what we pay for at fancy restaurants: not the raw calories, but the fine linen, the service, and the chef’s ineffable artistry. In our overall energy accounts, the sophisticated power-conversion hardware matters more every year, and the cost of raw fuel matters less.
This in itself is great news for America. We’re good at large-scale hardware; we build it ourselves and keep building it cheaper. The average price of U.S. electricity fell throughout the twentieth century, and it has kept falling since, except in egregiously mismanaged markets such as California’s.
The cheap, plentiful power does terrific things for labor productivity and overall employment. As Lewis E. Lehrman notes, rising employment strongly correlates with rising supplies of low-cost energy. It takes energy to get the increasingly mobile worker to the increasingly distant workplace, and energy to process materials and power the increasingly advanced machines that shape and assemble those materials.
Most of the world, Europe aside, now recognizes this point. Workers in Asia and India are swiftly gaining access to the powered machines that steadily boosted the productivity of the American factory worker throughout the twentieth century. And the electricity driving those machines comes from power plants designed—and often built—by U.S. vendors. The power is a lot less expensive than ours, though, since it is generated the old-fashioned forget-the-environment way. There is little bother about protecting the river or scrubbing the smoke. China’s answer to the 2-gigawatt Hoover Dam on the Colorado River is the Three Gorges project, an 18-gigawatt dam on the Yangtze River. Combine cheaper supplies of energy with ready access to heavy industrial machines, and it’s hard to see how foreign laborers cannot close the productivity gap that has historically enabled American workers to remain competitive at considerably higher wages. Unless, that is, the United States keeps on pushing the productivity of its own workforce out ahead of its competitors. That—inevitably—means expanding our power supply and keeping it affordable, and deploying even more advanced technologies of powered production. Nuclear power would help keep the twenty-first-century U.S. economy globally competitive.
Greens don’t want to hear it, but nuclear power makes the most environmental sense, too. Nuclear wastes pose no serious engineering problems. Uranium is such an energy-rich fuel that the actual volume of waste is tiny compared with that of other fuels, and is easily converted from its already-stable ceramic form as a fuel into an even more stable glass-like compound, and just as easily deposited in deep geological formations, themselves stable for tens of millions of years. And what has Green antinuclear activism achieved since the seventies? Not the reduction in demand for energy that it had hoped for but a massive increase in the use of coal, which burns less clean than uranium.
Many Greens think that they have a good grip on the likely trajectory of the planet’s climate over the next 100 years. If we keep burning fossil fuels at current rates, their climate models tell them, we’ll face a meltdown on a much larger scale than Chernobyl’s, beginning with the polar ice caps. Saving an extra 400 million tons of coal here and there—roughly the amount of carbon that the United States would have to stop burning to comply with the Kyoto Protocol today—would make quite a difference, we’re told.
But serious Greens must face reality. Short of some convulsion that drastically shrinks the economy, demand for electricity will go on rising. Total U.S. electricity consumption will increase another 20 to 30 percent, at least, over the next ten years. Neither Democrats nor Republicans, moreover, will let the grid go cold—not even if that means burning yet another 400 million more tons of coal. Not even if that means melting the ice caps and putting much of Bangladesh under water. No governor or president wants to be the next Gray Davis, recalled from office when the lights go out.
The power has to come from somewhere. Sun and wind will never come close to supplying it. Earnest though they are, the people who argue otherwise are the folks who brought us 400 million extra tons of coal a year. The one practical technology that could decisively shift U.S. carbon emissions in the near term would displace coal with uranium, since uranium burns emission-free. It’s time even for Greens to embrace the atom.
It must surely be clear by now, too, that the political costs of depending so heavily on oil from the Middle East are just too great. We need to find a way to stop funneling $25 billion a year (or so) of our energy dollars into churning cauldrons of hate and violence. By sharply curtailing our dependence on Middle Eastern oil, we would greatly expand the range of feasible political and military options in dealing with the countries that breed the terrorists.
The best thing we can do to decrease the Middle East’s hold on us is to turn off the spigot ourselves. For economic, ecological, and geopolitical reasons, U.S. policymakers ought to promote electrification on the demand side, and nuclear fuel on the supply side, wherever they reasonably can.

Tags Indian Point, American Survival, Global Warming, High Tech Energy

Friday, April 27, 2007

Responsible Use of the ISA....for dummies


The difference between the general public repeatedly being shown acceptable safety conditions by an alarmist press wrongly deeming them possible emergencies, and a truly degraded or dangerous nuclear plant , ...has not been made sufficiently clear.

Even an absolute collapse of local political confidence in NRC and its day-to-day oversight cannot be solved by re-inspecting all 104 nuclear plants whenever a local political figure gains traction for the idea in his/her constituency. Such a development can only result in the squandering of resources, funding, and effort into situations not warranting such activity. Taken to its extrapolated worst case, this strategy would flood all 104 nuclear plants with hordes of intrusive inspectors, impeding plant operations, and possibly inducing the very events they came to inspect against.

One of the first principles espoused in the international IAEA document 75-INSAG-3, "Basic Safety Principles for Nuclear Plants", in its preamble by nobel laureate Mohammed El Baradei, is that effort must be targeted to need. "It is important to avoid concentrating resources on efforts that have only marginal effects"..

With local governmental figures voicing ephemeral concerns brought to their attention from activist, intervenor, and opposer groups, outside of any indication that acceptable safety has truly been compromised, we see a clear need for a high level separation of fact and claim, perhaps by a national or international committee, establishing guidelines, and trip-points for the beneficial use of independent safety assessments, and likewise setting precise indicators barring the frivolous use of ISA as a political panacea.

The basic safety case for each of the 104 American nuclear plants has been set out in their Preliminary Safety Analysis Report and their Final Safety Analysis Report. Deterministic comparison of each plant's adherence to its written safety case is provided in real-time by the presence of resident NRC inspectors, and the NRC Reactor Oversight Program.

Probabilistic analysis of the major US plant types can be done by qualified researchers at any time, setting out the risks versus the probabilities in general, allowing guidelines to stand as required reading for those who would inspect, and re-inspect, frivolously, without knowing anything at all about the limits of mere inspection.

(Inspection as a tactic cannot predict an unforseen event. The very evening an ISA is completed at plant "X", a meteor could strike the containment dome, and breach the reactor core--- the inspection would have been a total waste of time).

Politicians ignorant of Probabilistic Risk Analyses seek an absolute "How Safe Is It?" answer , one that eternal inspection, by its very nature, cannot supply. PRA can provide that overview. Therefore politicians should direct the Congressional Research Service to commission a national PRA report on the 104 reactors, as their own internal legislative guide on how to avoid useless calls for repeat ISA's. In point of fact, politicians have been slyly misguided by intervenor and opposer public relations operatives posing as "technical experts", and given the Maine Yankee ISA & shutdown as the one and only way to find out if your local nuke is dangerous. Actually, the MY ISA found the plant was acceptable for further operation. It was a bereft conglomerate corporate culture that had no further interest in its nuclear asset, and bailed out. So even in the case of Maine Yankee, the public was never told how safe the plant was, or was not.

In the face of this impossibility to get blood from a stone, vis-a-vis the ISA tactic, politicians must be educated where to look for this information. I would challenge Senator Clinton and Congressman Hall to write up legislation empowering NRC or CRS to do a "PRA Constitutional Report" on each of the American reactors, with appropriate funding and a clear legislative charter., and to report the results in a high level national safety assessment.

After this report had scientifically charted the relative safety of all 104, then , and only then, would ISA become a useful tool, targeted at whatever specific need had been scientifically unearthed in the PRA Constitutional. This also has the benefit of closely following the IAEA methodology set out in 75-INSAG-3, the high-level agenda-free international document most trustworthy as an authority in these matters.

Without such a framework, any call for an ISA, without clearly demonstrated need, can rightly be called frivolous misuse of legislative priviledge. Within such a framework, established need can form the basis of any future calls fo an ISA.

Reference Documents may be found at:

http://www-pub.iaea.org/MTCD/publications/PDF/P082_scr.pdf , links to the current international standard for safety at nuclear plants. "75-INSAG-3"

http://www-pub.iaea.org/MTCD/publications/PDF/Pub991e_web.pdf, is the IAEA publication setting the international standard for judging safety in nuclear plants built to earlier standards.
The document is named "INSAG-8"


Blog: WHITE NUCLEAR SNOWFLAKE - Get your quick ping button at autopinger.com!

Thursday, April 26, 2007

JORGE FITZWITHERSPOON SPEAKS !!



Yellow Journalism on the Hudson (?)

In an amazingling brassy and overt display of journalistic delinquency, Gannett Journal News reporter Jorge FitzGibbon manages to read a clearly worded Manhattanville poll, where 47 percent of local residents say they want Indian Point open, having judged it as posing little or no risk, versus 33 percent wanting it closed, and somehow produce the blatantly deceptive banner headline:

"POLL: PUBLIC WORRIED ABOUT INDIAN POINT"

Are you kidding Mr. Fitzgibbon? I have a copy of the Gannett Code of Journalistic Ethics here on my desk, and I can see at a glance , that you have skewed the facts.

Digging deeper than the headline, we see FitzGibbon intentionally blurring the two opposing sides, coming up with an untrue, unscientific description barely mentioning the pro-nuclear landslide, and claiming deceptively "residents still have worries" Oh yeah, Jorge? Maybe the 33 % on the anti side worry, but the wording of the survey question specifically asks if respondents have concerns, and the 47% majority specifically state that do not have any concerns.

What malicious alchemical formula can you use to turn gold back into non-factual lead, as you have done in taking the facts ....47% for, only 33% against, and coming up with this huge blunder of journalistic arrogance:

"Poll: Public worried" ?

Imagine a 47 to 33 landslide in any election. Let's say--- John Kerry 47%, GW Bush 33% in 2004, for instance (or the reverse). Piles of books would be written about the greatest landslide in modern electoral history. Robert F Kennedy would be out of a job---you can't electronically hack a fake 14% discrepancy in Ohio or anywhere else--- the gap is just too large.

And.... add to that 14% gap, the fact that it occurs after seven long years of feverish organizing, letter writing, blogging, and furious emailing, by mock-local groups covertly paid to spread fear by the G.R.A.C.E. foundation, Tamarind foundation, and the antinuke Helene Heilbrunn Lerner foundation, as well as Riverkeeper, Wespac, Ipsec and their duped contributors --- all for naught. Or rather .....all for a very clear minus 14.

Shame, Fitzgibbon.... Shame on you. And shame on Gannett for abetting such malicious unethical "journalism."

Actually journalism is the wrong word. Faux journalism maybe. Agendist Propaganda is coming closer. Maybe it would be more accurate to simply say:

Yellow Journalism.

I expect Mr. FitzGibbon to launch into a huffy retort tomorrow, perhaps telling us how corrupt the good nuns over at Manhattanville have become, shilling for Entergy , and publishing false survey reports. It's no more than I would expect from a Goebbels-on-the-Hudson.

Yes, I kind of like that .....

Goebbels-on-the-Hudson....

has a Gannett-type ring to it!

Kind of FitzGibbon-esqe !!

Monday, April 23, 2007

Use your ISA Responsibly, or not at all


The difference between the general public repeatedly being shown acceptable safety conditions by an alarmist press wrongly deeming them possible emergencies, and a truly degraded or dangerous nuclear plant , ...has not been made sufficiently clear.

Even an absolute collapse of local political confidence in NRC and its day-to-day oversight cannot be solved by re-inspecting all 104 nuclear plants whenever a local political figure gains traction for the idea in his/her constituency. Such a development can only result in the squandering of resources, funding, and effort into situations not warranting such activity. Taken to its extrapolated worst case, this strategy would flood all 104 nuclear plants with hordes of intrusive inspectors, impeding plant operations, and possibly inducing the very events they came to inspect against.

One of the first principles espoused in the international IAEA document 75-INSAG-3, "Basic Safety Principles for Nuclear Plants", in its preamble by nobel laureate Mohammed El Baradei, is that effort must be targeted to need. "It is important to avoid concentrating resources on efforts that have only marginal effects"..

With local governmental figures voicing ephemeral concerns brought to their attention from activist, intervenor, and opposer groups, outside of any indication that acceptable safety has truly been compromised, we see a clear need for a high level separation of fact and claim, perhaps by a national or international committee, establishing guidelines, and trip-points for the beneficial use of independent safety assessments, and likewise setting precise indicators barring the frivolous use of ISA as a political panacea.

The basic safety case for each of the 104 American nuclear plants has been set out in their Preliminary Safety Analysis Report and their Final Safety Analysis Report. Deterministic comparison of each plant's adherence to its written safety case is provided in real-time by the presence of resident NRC inspectors, and the NRC Reactor Oversight Program.

Probabilistic analysis of the major US plant types can be done by qualified researchers at any time, setting out the risks versus the probabilities in general, allowing guidelines to stand as required reading for those who would inspect, and re-inspect, frivolously, without knowing anything at all about the limits of mere inspection.

(Inspection as a tactic cannot predict an unforseen event. The very evening an ISA is completed at plant "X", a meteor could strike the containment dome, and breach the reactor core--- the inspection would have been a total waste of time).

Politicians ignorant of Probabilistic Risk Analyses seek an absolute "How Safe Is It?" answer , one that eternal inspection, by its very nature, cannot supply. PRA can provide that overview. Therefore politicians should direct the Congressional Research Service to commission a national PRA report on the 104 reactors, as their own internal legislative guide on how to avoid useless calls for repeat ISA's. In point of fact, politicians have been slyly misguided by intervenor and opposer public relations operatives posing as "technical experts", and given the Maine Yankee ISA & shutdown as the one and only way to find out if your local nuke is dangerous. Actually, the MY ISA found the plant was acceptable for further operation. It was a bereft conglomerate corporate culture that had no further interest in its nuclear asset, and bailed out. So even in the case of Maine Yankee, the public was never told how safe the plant was, or was not.

In the face of this impossibility to get blood from a stone, vis-a-vis the ISA tactic, politicians must be educated where to look for this information. I would challenge Senator Clinton and Congressman Hall to write up legislation empowering NRC or CRS to do a "PRA Constitutional Report" on each of the American reactors, with appropriate funding and a clear legislative charter., and to report the results in a high level national safety assessment.

After this report had scientifically charted the relative safety of all 104, then , and only then, would ISA become a useful tool, targeted at whatever specific need had been scientifically unearthed in the PRA Constitutional. This also has the benefit of closely following the IAEA methodology set out in 75-INSAG-3, the high-level agenda-free international document most trustworthy as an authority in these matters.

Without such a framework, any call for an ISA, without clearly demonstrated need, can rightly be called frivolous misuse of legislative priviledge. Within such a framework, established need can form the basis of any future calls fo an ISA.

Reference Documents may be found at:

http://www-pub.iaea.org/MTCD/publications/PDF/P082_scr.pdf , links to the current international standard for safety at nuclear plants. "75-INSAG-3"

http://www-pub.iaea.org/MTCD/publications/PDF/Pub991e_web.pdf, is the IAEA publication setting the international standard for judging safety in nuclear plants built to earlier standards.
The document is named "INSAG-8"


Blog: WHITE NUCLEAR SNOWFLAKE - Get your quick ping button at autopinger.com!

Sunday, April 22, 2007

WORD...OUT OF IPEC


Imagine what it might be like to hold in your hand, the viability of the lifestyles of 20 million people. People you will never meet, but people dependent on your conscientious actions 24 hours every day, forever. Our American Civilization itself, riding on your shoulders. There are those who try to imagine this connection irresponsibly, without ever having the actual power delegated to them, and the actual moral obligation. Whatever they may fantasize, is fine, if they can begin to approach that state of connectedness that your invisible energy providers take for granted 24-7-365. Your energy providers, including those at IPEC, are aware of your needs. They know, individually, that their every single action in any day, upholds the health, prosperity and the happiness of some neighbor-- of every neighbor, every second of every day, forever. We think of you all the time.

If all goes well, we hope you will never notice us. We want you to have all the benefit, and none of the concern. We want you to prosper, and forget about the politics. We want your life to flow, uninterrupted, from minute first to minute last, unfettered by activist bantering, celebrity career posturing, political fear mongering, and outright deception on behalf of advertising aimed to raise the fame prospects of faux Jeremiahs, "mock-sure" of impending doom, a doom which somehow never seems to materialize, except on those weeks when a collection campaign is held, to pay for further nonsense worries, for yet one more unsettled year of unfulfilled predictions..

Mankind is not god. No way of living is ordained by almighty fiat as unarguable, perfect, sinless, and totally beneficial. For every home built, some forest is lost. For every mile driven, some CO2 is released.There is not, and cannot ever be "a perfect society". We know that, regrettably, as sure as sunrise, sunset, death & taxes.

So... reams of Jeremiad bluster about imperfection, about doom, about deceit, and human fallibility, are fine insofar as they remain personal revelations of personal angst, but fail utterly in making a world, in exciting, in motivating, in reassuring, and in actually DOING anything at all, for any of us.

More than a Feeling.

As the pop rock anthem of 1970 sang to us, we need more than a feeling, in order to reach full potential, to help each other, and to change reality and the world for the good. The daily efforts of the 1600+ conscientious expert local power-makers working for Entergy at IPEC, do this for you constantly, do it caringly, and do not harrass you, do not ask for strained belief in wild scenarios, or strained requests for moneys never returned, or give empty promises never intended to be kept.

Nor do we frighten you with scenes of what will never be, maliciously deeming it "what might be", when , in fact, it never has happened, and in truth, never will happen. If America is to remain a viable entity, supporting its people, it cannot fear every imaginary mouse dreamt up by overly creative movie writers, or overly creative movie writers falsely calling themselves "watchdogs" or "activists".

A true activist empowers his society as it really is. Thus the working folks at IPEC are the true activists, lighting your nights, powering your schools and hospitals, silently & reliably always present in your life , --not to frighten, warn, change, or dun you for donations, but to allow you be great,... each in your own way.

Malicious destroyers, casting doubt on every viable alternative society might try, are not activists, but rather deluded egomaniacs, hawking "perfection or nothing", and thus, in the way of all things real, ensuring nothingness prevails. Their impossible dreams are not worth our common undoing, to prove some sentence they uttered was more than idle argument. We need IPEC. We want IPEC. IPEC wants us. We get along. We agree. There is no problem.

Let those who invent false problems out of activist arrogance watch the rest of us succeed, bow their heads, and follow.